

pg_profile - PostgreSQL historic
workload reporting tool

Andrey Zubkov, Senior DBA

Postgres Professional

May 11, 2021

Problem

● Which workload causes the most
resource consumption in a database?

● What is the cause of that performance hit
since last week when system performed
well?

Approaching the problem

For a Postgres database we can do the following:
● Setup detailed logging with further log analysis
● Collect performance statistics and track

changes

This talk is about a tool, implementing the second
approach

Statistics approach pros and cons

+ Track all statements (even very short)
+ Track database object statistics
+ Avoid huge log-file writing and analysis
- No parameter values
- No plans
- Failed statements are invisible

pg_profile concepts

● Pure pl/pgsql, i.e. no binaries/libraries, services, etc.

● Sampling. 1-2 samples per hour
(no much overhead)

● Build a report between any two samples
● Build a differential report on two intervals

All you need is postgres!

pg_profile sample contents

pg_stat_database

pg_stat_tablespaces

pg_stat_all_tables pg_stat_all_indexes

pg_statio_all_tables

pg_settings

pg_stat_bgwriter

pg_stat_archiver

pg_statio_all_indexes

pg_stat_user_functions pg_profile

(pgpro_pwr)

sample

pg_stat_statements pg_stat_kcache
pgpro_stats

Real issue
unexpected hit rate increase

Issue affects execution time

How can pg_profile help us?
● Build a report on known bad time interval

Report contents
Server statistics
 Database statistics
 Statement statistics by database
 Cluster statistics
 Tablespace statistics
SQL Query statistics
 Top SQL by elapsed time
 Top SQL by planning time
 Top SQL by execution time
 Top SQL by executions
 Top SQL by I/O wait time
 Top SQL by shared blocks fetched
 Top SQL by shared blocks read
 Top SQL by shared blocks dirtied
 Top SQL by shared blocks written
 Top SQL by WAL size
 Top SQL by temp usage
 rusage statistics
 Top SQL by system and user time
 Top SQL by reads/writes done by filesystem layer
 Complete list of SQL texts

Schema object statistics
 Top tables by estimated sequentially scanned volume
 Top tables by blocks fetched
 Top tables by blocks read
 Top DML tables
 Top tables by updated/deleted tuples
 Top growing tables
 Top indexes by blocks fetched
 Top indexes by blocks read
 Top growing indexes
 Unused indexes
User function statistics
 Top functions by total time
 Top functions by executions
Vacuum-related statistics
 Top tables by vacuum operations
 Top tables by analyze operations
 Top indexes by estimated vacuum I/O load
 Top tables by dead tuples ratio
 Top tables by modified tuples ratio
Cluster settings during the report interval

Issue time report

Report on 11:00-13:00

should do the trick

$ psql -Aqtc \
"SELECT profile.get_report(130,134)" \
-o report_issue.html
$

Statements by execution time

Top SQL by shared blocks fetched

Top tables by blocks fetched

Top indexes by blocks fetched

How can pg_profile help us?
● Issue report findings:

– Leading three statements consumed 65% of time and 91% of blocks

– Leading two tables with indexes consumed 93% of blocks

How can pg_profile help us?
● Issue report findings:

– Leading three statements consumed 65% of time and 91% of blocks

– Leading two tables with indexes consumed 93% of blocks

● Let’s build a differential report

Differential report

● Built on two time intervals
● Statistics of the same objects located one

next to other
● The first interval values colored red, and

the second interval values colored blue

Differential report

Differential report on
11:00-13:00 today with
11:00-13:00 yesterday

$ psql -Aqtc \
"SELECT
profile.get_report(82,86,130,134)" \
-o diffreport_issue.html
$

Database statistics

Top SQL by execution time

Top tables by blocks fetched

How can pg_profile help us?
● Issue report findings:

– Leading three statements consumed 65% of time and 91% of blocks

– Leading two tables with indexes consumed 93% of blocks

● Differential report findings:

– Leading statements executed 4 orders of magnitude longer

– The slowest query returned 4 orders of magnitude more rows

– There are 4 orders of magnitude more blocks got from top table

Investigation results
● We’ve got their names
● We’ve got their IDs and texts
● We’ve got absolute numbers

What is next?
● Application optimization
● Query optimization
● Compare results

pgpro_pwr

● Execution statistics at the plan level
● Wait statistics based on wait sampling

Thank you!

Andrey Zubkov,

Postgres Professional, 2021

a.zubkov@postgrespro.ru

pg_profile https://github.com/zubkov-andrei/pg_profile

Postgres Pro Standard 13 https://bit.ly/3nOmUL8

Postgres Pro Enterprise 13 https://bit.ly/2QOo7q2

